Search results for "factorization [scale]"

showing 3 items of 3 documents

Discrete and Conservative Factorizations in Fib(B)

2021

AbstractWe focus on the transfer of some known orthogonal factorization systems from$$\mathsf {Cat}$$Catto the 2-category$${\mathsf {Fib}}(B)$$Fib(B)of fibrations over a fixed base categoryB: the internal version of thecomprehensive factorization, and the factorization systems given by (sequence of coidentifiers, discrete morphism) and (sequence of coinverters, conservative morphism) respectively. For the class of fibrewise opfibrations in$${\mathsf {Fib}}(B)$$Fib(B), the construction of the latter two simplify to a single coidentifier (respectively coinverter) followed by an internal discrete opfibration (resp. fibrewise opfibration in groupoids). We show how these results follow from thei…

Coidentifier; Coinverter; Factorization system; Internal fibrationPhysicsSequenceAlgebra and Number TheoryOrthogonal factorizationGeneral Computer ScienceInternal versionFactorization systemTheoretical Computer ScienceCombinatoricsSettore MAT/02 - AlgebraCoinverterTransfer (group theory)MorphismFactorizationInternal fibrationCoidentifierFixed baseApplied Categorical Structures
researchProduct

QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms

2018

[EN] Even though QR-factorization of the system matrix for tomographic devices has been already used for medical imaging, to date, no satisfactory solution has been found for solving large linear systems, such as those used in computed tomography (CT) (in the order of 106 equations). In CT, the Feldkamp, Davis, and Kress back projection algorithm (FDK) and iterative methods like conjugate gradient (CG) are the standard methods used for image reconstruction. As the image reconstruction problem can be modeled by a large linear system of equations, QR-factorization of the system matrix could be used to solve this system. Current advances in computer science enable the use of direct methods for…

QR-factorization algorithmComputer scienceIterative methodImage qualityLinear systemDavis and Kress (FDK)Iterative reconstruction3-D images reconstructionSystem of linear equationsAtomic and Molecular Physics and OpticsConjugate gradient (CG)FeldkampQR decompositionMatrix (mathematics)Conjugate gradient methodRadiology Nuclear Medicine and imagingMedical imagingMATEMATICA APLICADAInstrumentationAlgorithmComputed tomography (CT)Reconstruction algorithmsReconstruction toolkit (RTK)
researchProduct

Distributors and the comprehensive factorization system for internal groupoids

2017

In this note we prove that distributors between groupoids in a Barr-exact category epsilon form the bicategory of relations relative to the comprehensive factorization system in Gpd(epsilon). The case epsilon = Set is of special interest.

Settore MAT/02 - AlgebraMathematics::Category Theoryinternal groupoidprofunctorFOS: MathematicsMathematics - Category TheoryCategory Theory (math.CT)factorization systemdistributor18A32 20L05
researchProduct